sábado, 23 de março de 2019



x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


, a  constante
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


 
 
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



termoquímica, também chamada de termodinâmica química, é o ramo da físico-química que estuda as quantidades de calor(energia) absorvidas ou liberadas em reações químicas, assim como as transformações físicas, tais como a fusão e a ebulição, baseando-se em princípios da termodinâmica.[1][2][3][4][5]
A termoquímica genericamente é relacionada com a troca de energia acompanhando transformações, tais como misturastransições de fases, reações químicas, além de calcular grandezas como a capacidade térmica, o calor de combustão, o calor de formação, a entalpia e a energia livre.[1][6]

A termoquímica apoia-se sobre duas generalizações:[7]
  1. Leis de Lavoisier e Laplace (1780): A transferência de energia acompanhando qualquer transformação é igual e oposta à transferência de energia acompanhando o processo reverso.[8]
  2. Lei de Hess (1840): A variação de energia (entalpia) total de uma reação é a soma das entalpias de reação das etapas em que a reação pode ser dividida.[9]
Gustav Kirchhoff mostrou em 1858 que a variação do calor de reação é dada pela diferença da capacidade térmica entre os produtos e os reagentes: dΔH / dT = ΔCp. A integração dessa equação permite avaliar o calor de reação a uma temperatura a partir de valores em outra temperatura.[10][11]

Princípios[editar | editar código-fonte]

Calor e calorimetria[editar | editar código-fonte]

Ver artigos principais: Calor e Calorimetria
As transformações físicas e as reações químicas são, geralmente, acompanhadas pela liberação ou absorção de calor. Sabe-se, por exemplo, que é necessário fornecer calor (energia) para que a água seja aquecida a ponto de se vaporizar; e que, por outro lado, há liberação de calor (energia) quando o vapor da água se condensa. Percebe-se a enorme importância de se conhecer e controlar essas trocas de calor, por exemplo, no funcionamento das locomotivas a vapor, um dos avanços tecnológicos centrais da primeira revolução industrial, que transformava a energia térmica em trabalho.[1]
calorimetria é o estudo e a medição das quantidades de calor liberadas ou absorvidas pelos fenômenos físicos e químicos.[12]Para o desenvolvimento experimental da medição do calor, foram construídos os calorímetros, aparelhos utilizados para efetivamente medir o calor trocado. Um dos mais simples calorímetros é o calorímetro de água, em que se coloca um corpo aquecido (ou que provoque uma reação química) dentro da água contida pelo calorímetro, resultando em seu aquecimento. Conhecendo o quanto a temperatura da água se elevou, é possível determinar a quantidade de calor liberada pelo corpo ou pela reação, contanto que a troca de calor com o ambiente externo seja desprezível. Com isso, percebe-se que o aumento de temperatura da água é devido exclusivamente ao corpo aquecido ou à reação ocorrida, isto é, o calor recebido pela água é, em módulo, igual ao calor cedido pelo corpo ou pela reação. Portanto, denominando-se por  a massa de água do calorímetro, por  o calor específico da água, e por  a variação na temperatura da água, temos que o calor trocado  é tal que:[13]

Energia interna[editar | editar código-fonte]

Ver artigo principal: Energia interna
Na física da mecânica clássica, existem fundamentalmente dois tipos de energia que um objeto pode ter:
  • energia cinética, associada ao seu movimento;
  • energia potencial, por ele armazenada e que pode se transformar em outro tipo de energia, cinética ou potencial.
Desse modo, é possível entender o calor liberado ou absorvido por uma reação química a partir do conceito de energia interna. A energia interna de uma substância qualquer, composta por átomos e/ou moléculas, é equivalente a soma da energia química armazenada por ligações elétricas entre átomos e entre moléculas (uma forma de energia potencial), e da energia térmica armazenada na translaçãovibração ou rotação de átomos e moléculas (uma forma de energia cinética). Isto é, a energia interna de uma substância é armazenada parcialmente na forma de energia química e parcialmente na forma de energia térmica.[14]
Tomando a generalização do conceito de energia interna de uma substância como sendo a energia interna de um sistema, a soma de todas as energias internas das substâncias que o compõem, enuncia-se então a lei da conservação de energia ou a primeira lei da termodinâmica para um sistema isolado, que não troca calor, e nem sofre nem exerce trabalho. Essa lei afirma que a variação da energia interna de um sistema isolado é nula, ou, de forma equivalente, a energia interna de um sistema isolado é constante.[14]

Entalpia[editar | editar código-fonte]

Combustão de carvão, liberando calor.
Ver artigo principal: Entalpia
Para definir a entalpia, é conveniente tomar o exemplo da queima de carvão em um ambiente aberto. Nele, o carbono () no carvão reage com o gás oxigênio () da atmosfera, produzindo monóxido de carbono (). Resume-se a reação na seguinte equação, já balanceada:[14]
Em uma análise preliminar, percebe-se que o volume do sistema aumentou, pois, já que o volume do carbono sólido era desprezível, havia 1 mol  que se transformou em 2 mols de . Portanto, parte da energia liberada na reação foi utilizada para expandir o gás na forma de trabalho. Como decorrência da conservação de energia, esse trabalho de expansão deverá ser "descontado" da energia liberada pela ração, resultando em um "saldo" menor da energia. Denomina-se esse "saldo" por entalpia () ou conteúdo de calor. Essa grandeza sempre se refere à energia liberada ou absorvida pela reação em sistemas abertos, em que a pressão é constante devido ao reservatório da atmosfera.[14]
Com isso, a variação de entalpia () é a medida da quantidade de calor () liberada ou absorvida pela reação, à pressão constante (). Ou seja:[14]
, a  constante

Reações exotérmicas e endotérmicas[editar | editar código-fonte]

Ver artigos principais: Reação exotérmica e Reação endotérmica
Reações exotérmicas são as reações que produzem ou liberam calor, como por exemplo a queima de carvão e a combustão da gasolina.[1] Nelas, a entalpia dos reagentes é maior que a entalpia dos produtos, resultando em uma variação negativa de entalpia (). Já as reações endotérmicas são exatamente o oposto, absorvendo calor para poder serem realizadas, como a decomposição de carbonato de cálcio a síntese de óxido nítrico.[12] Nessas reações, a entalpia dos reagentes é menor que a entalpia dos produtos, resultando em uma variação positiva ().[2][3][4][5][14]
Como exemplo comparativo, a reação que tem como produto H2O é exotérmica, pois libera calor. Já a reação inversa é endotérmica, porque necessita de calor para que se gerem os produtos:[15]
 
 

Energia de ativação[editar | editar código-fonte]

energia de ativação é a menor quantidade de energia necessária que deve ser fornecida aos reagentes para a formação do complexo ativado e para a ocorrência da reação.

Ver também












  • 20Ca40 + Radiação ionizante → 2α4 + 18Ar36

x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

Ionização é um processo químico mediante ao qual se produzem íonsespécies químicas eletricamente carregadas, pela perda ou ganho de elétrons a partir de átomos ou moléculas neutras. Há várias maneiras pelas quais se podem formar íons. Na ionização de um ácido, por exemplo, a molécula de água é responsável por capturar um hidrogênioque está polarizado positivamente no ácido, formando o íon hidroxônio (H3O+) e um ânion (A-, sendo A um elemento ou composto presente no ácido).
  • HA(aq) + H2O(l) → H3O+(aq) + A-(aq)
No que se refere à radiação, há uma forma de ionização produzida pelas radiações ionizantes que transferem muita energia ao átomo atingido deixando-o instável, podendo gerar a fissão nuclear. Esse tipo de ionização é muito perigosa aos seres vivos, pois pode ocasionar mutações genéticas e cancerígenas. O exemplo a seguir é uma equação química que representa a ionização radioativa:
  • 20Ca40 + Radiação ionizante → 2α4 + 18Ar36
Pode-se também fornecer energia para o átomo liberar os seus elétrons. Inclui-se aqui a propriedade periódica energia de ionização ou potencial de ionização, que diz quanta energia é necessária para retirar um eletron do átomo.
Atenção: não confundir com dissociação, que é a separação de íons. Com isso a Ionização se satisfaz com o H20







princípio da exclusão de energias de Graceli.

duas energias não podem ocupar o mesmo estado quântico ao mesmo tempo.



princípio da incerteza de Graceli.

quando se conhece num tempo uma energia, não é possível conhecer outra energia ao mesmo tempo e no mesmo lugar e intensidade.








teoria da relatividade categorial Graceli

ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D











NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].